
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 25 (2014) 827–839
http://d
1045-92
(http://c

☆ This
n Corr
E-m

riccardo
nadia.ra

1 ht
journal homepage: www.elsevier.com/locate/jvlc
Km4City ontology building vs data harvesting and cleaning
for smart-city services$

Pierfrancesco Bellini 1, Monica Benigni 1, Riccardo Billero 1,
Paolo Nesi n,1, Nadia Rauch 1

DISIT Lab, Department of Information Engineering, University of Florence, Italy
a r t i c l e i n f o

Article history:
Received 19 September 2014
Received in revised form
18 October 2014
Accepted 21 October 2014
Available online 30 October 2014

Keywords:
Smart city
Knowledge base construction
Reconciliation
Validation and verification of knowledge
base
Smart city ontology
Linked open graph
Km4city
x.doi.org/10.1016/j.jvlc.2014.10.023
6X/& 2014 The Authors. Published by Elsev
reativecommons.org/licenses/by-nc-nd/3.0/)

paper has been recommended for acceptan
esponding author.
ail addresses: pierfrancesco.bellini@unifi.it (P
.billero@unifi.it (R. Billero), paolo.nesi@unifi
uch@unifi.it (N. Rauch).
tp://www.disit.dinfo.unifi.it.
a b s t r a c t

Presently, a very large number of public and private data sets are available from local
governments. In most cases, they are not semantically interoperable and a huge human
effort would be needed to create integrated ontologies and knowledge base for smart city.
Smart City ontology is not yet standardized, and a lot of research work is needed to
identify models that can easily support the data reconciliation, the management of the
complexity, to allow the data reasoning. In this paper, a system for data ingestion and
reconciliation of smart cities related aspects as road graph, services available on the roads,
traffic sensors etc., is proposed. The system allows managing a big data volume of data
coming from a variety of sources considering both static and dynamic data. These data are
mapped to a smart-city ontology, called KM4City (Knowledge Model for City), and stored
into an RDF-Store where they are available for applications via SPARQL queries to provide
new services to the users via specific applications of public administration and enter-
prises. The paper presents the process adopted to produce the ontology and the big data
architecture for the knowledge base feeding on the basis of open and private data, and the
mechanisms adopted for the data verification, reconciliation and validation. Some
examples about the possible usage of the coherent big data knowledge base produced
are also offered and are accessible from the RDF-store and related services. The article also
presented the work performed about reconciliation algorithms and their comparative
assessment and selection.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Despite the large work performed by Public Adminis-
trations (PAs) on producing open data they are not
typically semantically interoperable each other and
neither with the many private data available in the city.
ier Ltd. This is an open acce
.

ce by S.-K. Chang.

. Bellini),
.it (P. Nesi),
Open data coming from PA contains typically statistic
information about the city (such as data on the population,
accidents, flooding, votes, administrations, energy con-
sumption, presences on museums, etc.), location of point
of interests, POIs, on the territory (including, museums,
tourism attractions, restaurants, shops, hotels, etc.), major
GOV services, ambient data, weather status and forecast,
changes in traffic rules for maintenance interventions, etc.
Moreover, a relevant role is covered in the city by private
data coming from mobility and transport such as those
created by Intelligent Transportation Systems, ITS, for bus
management, and solutions for managing and controlling
parking areas, car and bike sharing, car flow in general,
ss article under the CC BY-NC-ND license

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2014.10.023
http://dx.doi.org/10.1016/j.jvlc.2014.10.023
http://dx.doi.org/10.1016/j.jvlc.2014.10.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.10.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.10.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2014.10.023&domain=pdf
mailto:pierfrancesco.bellini@unifi.it
mailto:riccardo.billero@unifi.it
mailto:paolo.nesi@unifi.it
mailto:nadia.rauch@unifi.it
http://www.disit.dinfo.unifi.it
http://dx.doi.org/10.1016/j.jvlc.2014.10.023

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839828
good delivering services, accesses on Restricted Traffic
Zone, RTZ, etc. Both open and private data may include
real time data such as the traffic flow measure, position of
vehicles (buses, car/bike sharing, taxi, garbage collectors,
delivering services, etc.), railway and train status with
respect to the arrival, park areas status, and Bluetooth
tracking systems for monitoring movements of cellular
phones as people, ambient sensors, and TV cameras
streams for security and flow. Both PAs and mobility
operators have large difficulties in elaborating and aggre-
gating data to provide new services, even if they could
have a strong relevance in improving the citizens' quality
of life and services. Therefore, our cities are not so smart as
they could be by exploiting a semantically interoperable
knowledge base on the available data. This condition is
also present in highly active cities on open data publica-
tion such as Firenze, Italy, that is considered one of the top
cities on Open Data in Italy and in Europe.

Therefore, variability, complexity, variety, and size of
these data make the data process of ingestion, aggregation,
to enable their exploitation a “Big Data” problem as
addressed in [2,3]. The variety and variability of data can
be due to the presence of several different formats, and to
scarce (or non-existing) interoperability among semantics
of the single fields and of the several data sets. In order to
reduce the ingestion and integration cost, by optimizing
services and exploiting integrated information at the
needed quality level, a better interoperability and integra-
tion among systems is required [1,2]. This problem can be
partially solved by using specific reconciliation processes
to make these data interoperable with other ingested and
harvested data. The velocity of data is related to the
frequency of data update, and it allows distinguishing
static from dynamic data. Static data are rarely updated,
such as once per month/year, as opposed to the dynamic
data which are updated: from once a day up to every
minute or more, to arrive at real time data. When these
data models are analyzed and then processed to become
semantically interoperable, they can be used to create an
integrated knowledge base that can be feed by corre-
sponding data instances (with static, quasi-static and real
time data). On the other hand, this approach does not
solve the problem since instances can be not interoperable
and linked together. For example, a street names coming
from two different sources physically identifying the same
street may be written in different manner creating a
sematic miss-link. These problems have to be solved as
well with reconciliation processes.

The above knowledge model construction may lead to
successfully create a large semantically interoperable knowl-
edge base that can be used to provide service to third party
applications of public administration or enterprises. These
applications can exploit the knowledge base making queries.
For example: searching services around a certain GPS point,
looking for area in which restaurant are not available, detect-
ing and predicting critical conditions, computing suggestions
for service tuning on the basis of statistical data, deducing
of causalities. These services can be contextualized and used
by different operators in the city such as: public administra-
tions, mobility operators, and commercials. Moreover, specific
applications for alerting on forecast and/or critical conditions
are going to be produced providing service to the public
administrators.

In this paper, the above mentioned process of knowl-
edge base construction is described from: ontology crea-
tion to the data ingestion and knowledge base production
and validation. It includes processes of data analysis for
ontology modeling, data mining, formal verification of
inconsistencies and incompleteness to perform data
reconciliation and integration. Among the several issues,
the most critical aspects are related to the ontology
construction that enables deduction and reasoning, and
on the verification and validation of the obtained model
and knowledge base. The paper is organized as follows. In
Section II, the overview of the proposed ontology is
presented together with the main problems underlined
its construction, and the main macro-classes. Section III
describes the details associated with each macroclass of
proposed km4City (Knowledge Model for City) ontology
and the integration with other vocabularies. Section IV
reports the general architecture adopted for processing
Open Data and the motivations that constrained its defini-
tion. In the same section, two services are presented that
allow navigating in the knowledge base and can be used
by non-data engineers. Section V presents the verification
and validation process adopted for the knowledge base,
and the results regarding the reconciliation precision and
recall by using different kind of algorithms. Conclusions
are drawn in Section 6.

2. Km4city ontology main elements

In order to create a knowledge model for Smart City
services, a large number of data sets have been analyzed to
see in detail each single data elements of each single data
set with the aim of modeling and establishing the needed
relationships among elements, thus making a general data
set semantically interoperable at model level (e.g., asso-
ciating the street names with toponimous coding, resol-
ving ambiguities). The result of this deep analysis phase is
the km4City, a knowledge model for the city and its
services. The work performed started from the models of
the data sets available in the Florence and Tuscany area,
and from the general datasets for similar data available on
the several open data portals. In total the whole data sets
taken into account have been are more than 800. At
regional level, Tuscany Region provided a set of open data
into the Mobility Integration Information Center of the
Tuscany Region (MIIC), and provide integrated and
detailed geographic information reporting each single
street in Tuscany (about 137,745), and the locations of a
large part of civic numbers, for a total of 1,432,223 (a wider
integration could be performed integrating also Google
maps and yellow/white pages). From the MIIC, it is
possible to recover information regarding streets, car
parks, traffic flow, bus timeline, etc. While from Florence
municipality, real time data such as those from the RTZ
about car passages, tram lines on the maps, bus stops, bus
tickets, statistics on accidents, ordinances and resolutions,
numbers of arrivals in the city, number of vehicles per year,
etc., can be obtained. From the other open data, points of
interest, POI, can be recovered as position and information

Fig. 1. Ontology macro-classes and their connections.

2 http://www.heppnetz.de/projects/goodrelations/.

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839 829
related to: museums, monuments, theaters, libraries, banks,
express couriers, police, firefighters, restaurants, pubs, bars,
pharmacies, airports, schools, universities, sports facilities,
hospitals, emergency rooms, government offices, hotels
and many other categories, including weather forecast by
LAMMA consortium. In addition to these data sets, the
private data coming from the mobility and transport
operators have been collected as well.

The analysis of the above mentioned data sets allowed
us to create the km4City integrated ontological model
presenting 7 main areas of macroclasses as depicted in
Fig. 1, and described as follows.

Administration: includes classes related to the struc-
turing of the general public administrations, namely PA,
and its specifications, Municipality, Province and Region;
also includes the class Resolution, which represents the
ordinance resolutions issued by each administration that
may change the traffic stream.

Street-guide: formed by entities as Road, Node, Road-
Element, AdministrativeRoad, Milestone, StreetNumber,
RoadLink, Junction, Entry, and EntryRule Maneuver, it is
used to represent the entire road system of Tuscany,
including the permitted maneuvers and the rules of access
to the RTZ. The street model is very complex since it may
model from single streets to areas, different kinds of
crosses and superhighways, etc. In this case, Ontology for
Transport Network (OTN) vocabulary has been exploited to
model traffic [4] that is more or less a direct encoding of
Geographic Data Files (GDF) in OWL.

Point of interest (POI): includes all services, activities,
which may be useful to the citizen and who may have the
need to “search-for” and to “arrive-at”. The classification of
individual services and activities is based on main and
secondary categories planned at regional level. In addition,
this macrosegment of the ontology may take advantage of
reusing Good Relation model of the commercial offers2: in
fact, the ontological model km4City allows connecting
Service instances to the corresponding instances of Loca-
tion belonging to GoodRelations model [16].

Local public transport: includes the data related to
major LPT (Local Public Transport, in Italian: TPL, Transport
Public Local) companies scheduled times, the rail graph, and
data relating to real time passage at bus stops. Therefore, this
macroclass is formed by classes PublicTransportLine, Ride,
Route, AVMRecord, RouteSection, BusStopForeast, Lot, Bus-
Stop, RouteLink, RouteJunction. (where AVM means Auto-
matic Vehicle Monitoring).

Sensors: macroclass concerns data from sensors: ambi-
ent, weather, traffic flow, pollution, etc. Currently, data
collected by various sensors installed along some streets of
Florence and surrounding areas, and those relating to free
places in the main car parks of the region, have been
integrated in the ontology. Some of the sensors can be
located on moving vehicles such as those on busses, car
sharing, bike sharing, and on citizens' mobiles, etc.

Temporal: macroclass that puts concepts related to
time (time intervals and instants) into the ontology, so
that associate a timeline to the events recorded and is
possible to make forecasts. It takes advantage from time
ontologies such as OWL-time [5].

Metadata: This group of entities represents the collection
of metadata associated with the data sets, and their status
conditions. If they have been ingested and integrated into the

http://www.heppnetz.de/projects/goodrelations/

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839830
RDF store index, data of ingestion and update, licenses
information, versioning, etc. In the case of problems with a
certain set of triples or attributes, it is possible to recover the
data sets that have generated them, when and how.

The km4City ontology reuses the following vocabularies:
dcterms: set of properties and classes maintained by the
Dublin Core Metadata Initiative; foaf: dedicated to the descrip-
tion of the relations between people or groups; schema.org:
for a description of people and organizations; wgs84_pos:
vocabulary representing latitude and longitude, with the
WGS84 Datum, of geo-objects. The present RDF store and
indexing engine OWLIM allows to perform geographic
queries, for example to identify the POI which are closer than
a given distant with respect to a specific GPS position. To this
end, a specific index is built during RDF store indexing.
3. Km4City smart-city ontology details

3.1. Administration macroclasss

The administration macroclass is structured in order to
represent the Italian public administration hierarchy: each
region is divided into several provinces, within which the
territory is divided into municipalities. Moreover each PA,
during its mandate, can produce resolutions and publish
statistics. To represent this situations the km4City ontol-
ogy has, as main class of administration macroclass, the
class PA, which has been defined as a subclass of foaf:
Organization, link that helps to assign a clear meaning to
this class. The three subclasses of PA, i.e. Region, Province
and Municipality are automatically defined according to
the restriction on some ObjectProperties: for example, the
class Region is defined as a restriction of the class PA on
ObjectProperty hasProvince, so that only the PA that
possess provinces, can be classified as Regions. Class PA is
connected to class Resolution through the ObjectProperty
hasApprovedPA, that has its inverse property, hasResolution.
Fig. 2. The street-guide macro-c
Statistical data related to both various municipalities in the
region and to each street, are represented by a unique class
StatisticalData, shared by macroclasses Administration and
Street Guide: as we will see also in the next subsection,
class StatisticalData is connected to both classes PA and
Road through ObjectProperty hasStatistic.
3.2. Street-guide macroclass

At regional level, the entire roads system, from an
administrative point of view, is seen as a set of adminis-
trative extensions or administrative roads, while from the
citizen’ point of view, it can be regarded as composed by a
set of roads. Each administrative road represents the
administrative division of the roads, based on which the
PAs have to manage them. Both administrative roads and
roads are formed by a variable number of road elements,
each of which starts and ends in a unique node. Each road
element, in turn, is formed by a set of sections separated
by an initial and a final junction, which allow delineating
the exact segmented line representing the road element.
The street numbers are placed on the roads, each of which
always corresponds to at least one entry. In some cases,
there are two entrances which correspond to a single
street number, i.e., the outer gate and the front door. With
respect to the road circulation, access rules and maneuvers
are defined: the first one defines access restrictions to each
road element, the seconds are mandatory turning maneu-
vers, priority or forbidden, which are described by indicat-
ing the order of road elements involving.

Another relevant element of the road system is the
milestone, which represents the kilometer stones that are
placed along the administrative roads. They are elements
that identify the precise value of the mileage at that point.

The above described situation has been modeled into
the km4City Ontology, choosing as the main class of street
guide macroclass, the RoadElement class, which is defined
lass of km4City ontology.

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839 831
as a subclass of the corresponding element in the OTN
Ontology (see Fig. 2), that is Road_Element. Each road
element is delimited by a start node and an end node,
detectable by the ObjectProperties startsAtNode and endsAt-
Node, which connect elements of the class in question to the
class Node, subclass of the same name class OTN:Node,
belonging to ontology OTN.

The class Node has been defined with a restriction on
DataProperty geo:lat and geo:long, two properties inher-
ited from the definition of the class Node as subclass of
geo:SpatialThing belonging to ontology Geo wgs84 [7]: in
fact, each node can be associated with only one pair of
coordinates in space, and a node without these values
cannot exist. The class Road is defined as a subclass of the
corresponding class in the OTN Ontology, i.e., the homon-
ymous class Road, with a cardinality restriction on Object-
Property containsElement, since a road that does not
contain at least one road element, cannot exist. Also the
class AdministrativeRoad is connected to class RoadElement
through two inverse ObjectProperties hasRoadElement and
formAdminRoad, while it is connected with only one
ObjectProperty, coincideWith, to the class Road.

In order to better clarify the relationship that exists
between classes Road, AdministrativeRoad and RoadEle-
ment: a Road's instance can be connected to multiple
instances of class AdministrativeRoad (e.g., if a road crosses
the border between two provinces), but the opposite is
also true (e.g., when a road crosses a provincial town
center and it assumes different names), i.e., there is a N:M
relationship between these two classes. On each road
element, it is possible to define access restrictions, identi-
fied by class EntryRule, which is connected to class Road-
Element through 2 inverse ObjectProperties, i.e., hasRule
and accessToElement. The class Maneuver and class EntryR-
ule are connected by ObjectProperty hasManeuver. More-
over, we verified that only in rare cases maneuvers
involving three different road elements, to represent the
relationship between classes Maneuver and RoadElement,
three ObjectProperties were defined: hasFirstElem, hasSe-
condElem and hasThirdElem. In addition to the ObjectProp-
erty that binds a maneuver to the junction that is
interested, that is, concerningNode (because a maneuver
takes place always in proximity of a node). Each instance
of Milestone class must be associated with a single instance
of AdministrativeRoad, and it is therefore defined a cardin-
ality restriction equal to 1. Associated with ObjectProperty
isInElement; also class Milestone is defined as subclass of
geo:SpatialThing, in this case the presence of coordinates is
not mandatory, to be capable to model entities that does
not present those data. Thanks to the owned data, classes
StreetNumber and Entry were defined: the connection of
class StreetNumber to class Road, is possible respectively
through the ObjectProperties hasStreetNumber and belong-
ToRoad. The relationship between classes Entry and Street-
Number, is also defined by the two ObjectProperties,
hasInternalAccess and hasExternalAccess. Class Entry is
defined as a subclass of geo:SpatialThing, and it is possible
to associate a maximum of one pair of coordinates geo:lat
and geo:long with each instance. The Street-guide macro-
class is connected to the Administration macroclass through
two different ObjectProperties – i.e., OwnerAuthority and
managingAuthority, which represent respectively the public
administration which owns an AdministrativeRoad, or public
administration that manages a RoadElement. Thanks to the
processing of KMZ files (Keyhole Markup Language file and
zero or more supporting files packaged in a ZIP file), is
possible to retrieve the set of coordinates that define the
broken line of each RoadElement. Each of these points is
added to the ontology as an instance of class Junction
(defined as a subclass of geo:SpatialThing, with compulsory
single pair of coordinates). Each small segment between
two instances of Junction class is instead an instance of class
RoadLink, which is defined by a restriction on the Object-
Properties ending and starting, which connect the two
mentioned classes. RoadLink and Juctions are in total about
20 million of triples.

3.3. Point of interest macroclass

This macroclass allows to represent services to the
citizens, points of interest, businesses activities, tourist
attractions, and anything else can be located thanks to a
pair of coordinates on a map. Each type of element has
been defined starting from the categories defined by the
Tuscany Region taxonomy of categories, including: Accom-
modation, GovernmentOffice, TourismService, TransferSer-
vice, CulturalActivity, FinancialService, Shopping,
Healthcare, Education, Entertainment, Emergency and
WineAndFood. The main class of the POI Macroclass is a
generic class Service for which the subclasses above
listened have been identified thanks to the value assigned
to ObjectProperty serviceCategory.

The class Accommodation, for example, was defined as a
restriction of class Service on ObjectProperty serviceCate-
gory, which must take one of the following values:
tourist_resort, hotel, tourist_home, rest_home, religiuos_-
guest_house, bed_and_breakfast, hostel, summer_residence,
vacation_resort, farmhouse, day_care_center, camping, his-
toric_residence, and mountain_dew.

We have also defined DataProperty ATECOcode, i.e.
ATECO is the ISTAT (national institute for statistics in Italy,
www.istat.it) code for the classification of economic activ-
ities, which could be used in future as a filter to define the
various services subclasses, in place of the categories
proposed by the Tuscany Region database, in order to
make more precise research of the various types of
services. Thanks to class Service, macroclasses Point of
Interest and Street guides can be connected by exploiting
ObjectProperty hasAccess, with which a service can be
connected to only one external access, corresponding to
the road and the street number of the service location. If
this association is not possible (because of lack of informa-
tion, missing street number, etc.), the connection between
the same two macroclasses listed above, is realized
through the ObjectProperty isInRoad, that connects an
instance of the class Service to an instance of the class
Road. In order to use at least one of these two ObjectProp-
erty to connect macroclasses Point of Interest and Street
Guides, an intense reconciliation phase is necessary, as
described in Section 4.

As mentioned in the previous paragraph, the km4City
ontology has the ability to interconnect each instance of

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839832
the Service class to the corresponding instance defined
according to the ontological model GoodRelations, i.e., gr:
Location; such connection can be finalized using the
ObjectProperty hasGRLocation.

3.4. Public transport macroclass

The TPL (Italian LPT) macroclass (see Fig. 3) includes
information relating to public transport by road and rail.
The public transport by road is organized in public trans-
port lots, each of which is composed by a number of bus
and tram lines. Each line includes at least two rides per
day (the first in ascendant direction, and the second one in
descendant direction), identified through a code provided
by the TPL company and each ride is scheduled to drive
along a specific path, called route. A route can be seen as a
series of road segments delimited by subsequent bus
stops, but wishing then to represent to a cartographic
point of view the path of a bus, we need to represent the
broken line that composes each stretch of road crossed by
the means of transport itself, and to do so, the previously
used modeling on road elements, has been reused: we can
see each path as a set of small segments, each of which
delimited by two junctions.

The part relating to rail transport: each railway line, i.e.,
an infrastructure designed to run trains between two
places of service, is composed by a number of railway
elements, which can also form a railway direction (a
railway line having particular characteristics of importance
for volume of traffic and transport relations linking centers
or main nodes of the rail network) and a railway section
(section of the line in which you can find only one train at
time, and that is usually preceded by a “protective” or
“block” signal). In addition, each rail element begins and
ends at a railway junction, in correspondence of which
there may be train stations or cargo terminals.

Based on the previous description, we have defined
class PublicTransportLine (a subclass of OTN:Line), which is
connected to the corresponding instance of class Lot,
thanks to ObjectProperty isPartOfLot. Every instance of
Fig. 3. km4City – public transpo
class PublicTransportLine is connected to class Ride through
ObjectProperty scheduledOnLine, which is defined as a
limitation of cardinality exactly equal to 1, because each
stroke may be associated to a single line. To model each
path and its sequence of crossed bus stops, classes Route
and BusStop have been defined. It has been decided to
define two ObjectProperties linking classes Route and
RouteSection, i.e. hasFirstSection and hasSection, since, from
a cartographic point of view, wanting to represent the path
that a certain bus follows. In details, knowing the first
segment and the stop of departure, it is possible to obtain
all the other segments that make up the complete path
and, starting from the second bus stop (that is identified as
the different stop from the first stop, but that it is also
contained in the first segment), we are able to reconstruct
the exact sequence of the bus stops, and then the seg-
ments, which constitute the entire path. For this purpose,
ObjectProperty hasFirstStop has been defined, which con-
nects classes Route and BusStop and ObjectProperty end-
sAtStop and startsAtStop, instead of connecting each
instance of RouteSection to eventual two instances of class
BusStop (subclass of OTN:StopPoint). Each stop is connected
to class Lot, through the ObjectProperty isPartOfLot, with a
1:N relation, because there are stops shared by urban and
suburban lines so they belong to two different lots.
Possessing also the coordinates of each stop, class BusStop
was defined as a subclass of geo:SpatialThing, and was also
termed a cardinality equal to 1 for the two DataProperty
geo:lat and geo:long. In order to represent the broken line
that composes each route, classes RouteLink and Route-
Junction, and the ObjectProperties beginsAtJunction and
finishesAtJunction, were defined. Class Route is connected
to class RouteLink through hasRouteLink ObjectProperty.

The Railway Graph is mainly formed by class Rail-
wayElement, that can be connected to classes RailwayDir-
ection and RailwaySection, thanks to two inverse
ObjectProperties isComposedBy and composeSection, and
to class RailwayLine, trough the two inverse ObjectProper-
ties isPartOfLine and hasElement. Each instance of class
RailwayElement is connected to two instances of class
rt macroclass (a portion).

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839 833
RailwayJunction (defined as a subclass of the OTN:Node),
by the ObjectProperties startAtJunction and endAtJunction,.
Classes TrainStation and GoodsYard correspond only to one
instance of the RailwayJunction class, both through the
ObjectProperty correspondToJunction.

3.5. Sensors macroclass

Sensors Macroclass consists of four parts related to car
parks sensors, weather sensors, traffic sensors installed
along roads/rails and to AVM/kit systems installed on
buses, cars and/or bikes. The first part is focused on the
real-time data related to parking: for each sensors
installed into different car parking areas, a status record
is received every 5 min. In each status report, there is
information about the number of free and occupied park-
ing spaces, for the main car parks. The weather sensors
produce real-time data concerns the weather forecast,
thanks to LAMMA (institute for modeling and monitoring
environmental conditions in Tuscany, http://www.lamma.
rete.toscana.it). This consortium updates the municipality
forecast report once or twice per day and every report
contains forecast for five days divided into range, which
have a greater precision (and a higher number) for the
nearest days until you get to a single daily forecast for the
4th and 5th day. The traffic sensors produce real-time data
concerning the sensors placed along the roads of the
region, which allow making different measures and
assessment related to traffic situation. Unfortunately, the
location of these sensors is not very precise, it is not
possible to place them in a unique point thanks to
coordinate, but only to place them within a toponym,
which for long-distance roads such as FI-PI-LI road (the
highway that connect Florence-Pisa-Livorno), it represents
a range of many miles. Each sensor, is part of a group and
produces observations which can belong to four types, i.e.
they can be related to the average velocity, car flow
passing in front of the sensor, traffic concentration, or to
the traffic density. On this regards, Bluetooth sensors could
be installed to trace the number of people passing by from
a given point.

The Automatic Vehicle Monitoring (AVM) systems part
concerns the sensors systems installed on most of buses,
which, at intervals of few minutes, send a report to the
management center. They provide information about: the
last stop performed, current GPS coordinates of the vehi-
cle, the vehicle identifiers and bus line, a list of upcoming
stops with the planned passage time.

To model the car parks situation class CarParkSensor
has been defined which is linked to instances of class
SituationRecord, that represents, the state of a certain
parking at a certain instant. This connection is performed
via the reverse ObjectProperties: relatedToSensor and has-
Record. This first part of the Sensors Macroclass is also
connected to the Point of Interest Macroclass through two
inverse ObjectProperties: observeCarPark and hasCarPark-
Sensor, which connect the classes CarParkSensor and
TransferService, respectively.

The weather situation is represented by class Weath-
erReport connected to class WeatherPrediction via the
ObjectProperty hasPrediction. Moreover, class Municipality
is connected to each report by two reverse ObjectProper-
ties: refersToMonicipalitu and hasWeatherReport, to realize
the connection between the macroclasses Sensors and
Administration.

With regard to traffic sensors, each group of sensors is
represented by class SensorSiteTable and each instance of
class SensorSite connects to its group through the Object-
Property formsTable and thanks to ObjectProperty placeOn-
Road each instance of class SensorSite can be connected
only to class Road (see Fig. 2), to create a connection
between Sensors and Street-guide macroclasses. Each
sensor produces observations represented by instance of
class Observation and, as mentioned earlier, there are four
possible subclasses: TrafficConcentration, TrafficHeadway,
TrafficSpeed, and TrafficFlow subclass. Classes Observation
and Sensor are connected via a pair of reverse Object-
Proeprties, hasObservation and measuredBySensor.

Finally, the last part of Sensors Macroclass is mainly
represented by two classes, AVMRecord and BusStopFore-
cast, and thanks to the ObjectProperty lastStop, this first
class can be connected to the BusStop class. The list of
scheduled stops is instead represented as instances of the
class BusStopForecast, a class that is linked to the class
BusStop through atBusStop ObjectProperty so as to be able
to recover the list of possible lines provided on a certain
stop (the class AVMRecord is in fact also connected to the
class Line via ObjectProperty concernLine).

3.6. Temporal macroclass

The temporal macroclass, is now only “sketchy” within
the ontology, and it is based on the time ontology [5] as it
has been used into OSIM ontology [8]. It requires the
integration of the concept of time as it will be of para-
mount importance to be able to calculate differences
between time instants, and the Time ontology comes to
help us in this task. We define fictitious URI: #instantFor-
ecast, #instantAVM, #instantParking, #instantWreport,
#instantObserv to associate at a resource URI a time
parameter – i.e. respectively BusStopForecast, AVMRecord,
SituationRecord, WheatherReport and finally Observation. It
is necessary to create a fictitious URI that links a time
instant to each resource, to avoid ambiguity, because
identical time instants associated with different resources
may be present (although the format in which a time
instant is expressed has a fine scale). Time Ontology is
used to define precise moments as temporal information,
and to use them as extreme for intervals and durations
definition, a feature very useful to increase expressiveness.

Pairs of ObjectProperties have also been defined for
each class that needs to be connected to the class Instant:
between classes Instant and SituationRecord were defined
the inverse ObjectProperties instantParking and observa-
tionTime, between classes WeatherReport and Instant, the
ObjectProperties instantWReport and updateTime have
been defined; between classes Observation and Time there
are the reverse ObjectProperties measuredTime and instan-
tObserv, between BusStopForecast and Time we can find
hasExpectedTime and instantForecast ObjectProperties, and
finally, between AVMRecord and Time, there are the reverse
ObjectProperties hasLastStopTime and instantAVM.

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839834
3.7. Metadata macroclass

Finally, Metadata macroclass is used to keep track of
the status and descriptors associated with the various
ingested dataset. Sesame [www.openrdf.org] allows
assigning a name (i.e., an identifier) to the various graphs
that can be identified within the defined ontology, so
defining some Named Graphs. This name, also called
“context”, allows expanding the triple data model to a
quad data model, defined as follow: subject-predicate-
object-context. Owlim, allows to assign the context to each
triple set, during the data loading phase. Therefore, a
description and status context called dataProperty is asso-
ciated with each data set. It allows to store all the useful
information related to a certain data set, such as: date of
creation, data source, original file format, dataset descrip-
tion, type of license bound to the dataset, kind of ingestion
process, and how much automated is the entire ingestion
process, type of access to the dataset, overtime, period,
associated parameters, date of last update, date of triples
creation, status of the ingestion process, etc.

4. Data engineering architecture

In this section, the description of the data engineering
architecture is presented (see Fig. 4). The whole ingestion
and quality improvement process can be regarded as
divided into the following phases of: data ingestions
(Phase I), quality improvement (phase II), mapping (phase
III), indexing (phase IV), reconciliation (phase V) to make
the model semantic interoperable, verification and valida-
tion (phase VI) and access/exploitation from services
(phase VII). The whole phases of the ingestion processes
are managed by a Process Scheduler that allocates pro-
cesses on a parallel and distributed architecture composed
by several servers. To allow the regular update of ingested
data the scheduler regularly retrieves data and check for
updates. The ingested data are transcoded, improved and
then mapped in the km4City Ontology. After that, they are
made available to applications on an RDF Store (OWLIM-
SE) using a SPARQL Endpoint. Applications can use the
geo-referenced data to provide advanced services to the
city citizens. Present applications, for knowledge base
Fig. 4. Big data processing a
browsing via Linked Open Data (http://log.disit.org) and
the Service Map (http://servicemap.disit.org), described in
the following section, can be used as explicative and
services for providing examples and SPARQL queries to
enable the construction of third party applications on
browsers and mobiles. ServiceMap and LOG are at the
same time demonstrators and developing tools for who
want to create new services through the project's APIs
released; in fact, thanks to these tools, developers can
better understand how the data are organized and how
they can be used to produce useful service for citizens.

4.1. Data ingestion and quality improvement

For the data ingestion, the typical problems are related
to the management of the several formats and of the
various data sets that may find allocation on different
segments and areas of the km4City Ontology, and that may
be not semantically interoperable. The solution allows
ingesting and harvesting a wide range of public and
private data, coming as static, semi-static and real time
data as mentioned in the previous sections. For the case of
Florence area, we are addressing about 180 different
sources of the 650 available. Static and semi-static data
include POIs, geo-referenced services, maps, accidents
statistic, and many statistics in general, etc. This informa-
tion is typically accessible as public files in several formats,
such as: SHP, KMZ, CVS, ZIP, XML, etc.

Each open data ingestion process retrieves information
and produce records in a noSQL Hbase for big data [9],
logging all the information acquired to trace back and
versioning the data ingestion. Data are then completed;
other columns are updated dynamically with other process
steps, and finally data obtained are placed on an HBase
table. Each open data has its own ingestion process
consisting of a scheduled ETL transformation (Extract,
Transform, and Load) on a parallel and distributed
architecture.

Real time data includes data coming from sensors (e.g.,
parking, weather conditions, pollution measures, position
of busses, etc.) that are typically acquired from Web
Services also by using a scheduled and specific ETL
transformation process. In most cases, the real-time data
rchitecture overview.

http://log.disit.org
http://servicemap.disit.org

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839 835
are directly pushed in the mapping process to feed the
temporary SQL store. They are typically streamed into the
traditional SQL store and then converted into triples in the
RDF final store.

In almost all cases, each single data set is ingested by
means of a different ETL process defined by using Pentaho
Kettle formalism [10] because, among the several existing
solutions, this formalism is quite diffused and easier to
understand, and it was already used by Information
Systems Directorate of Florence. When the Kettle language
presented limitation, external processes in Java have been
adopted.

Once stored on HBase, a process of Quality Improve-
ment is applied on these data, which aims to improve the
quality of the data before they will be transformed in
triples, however allowing keeping track of their original
shape. This quality improvement phase is realized by
means of a set of ETL transformations, created as a result
of an in-depth analysis on the most frequent errors
contained in each ingested dataset and thus mainly for
specific data types as dates, time, locality, addresses, URL,
email, telephones and fax, CAP code, ateco codes, etc.

4.2. Data mapping and indexing

The Mapping (phase III) deals with the transport of
information, previously saved and polished into HBase
database, into an RDF datastore, in our case managed by
Owlim-SE [11]. The first part of this procedure retrieves
information from HBase to put them on a temporary
MySQL database (required to use the Data Integration tool
chosen), while in the second part data are translated into
triples. Transformation is needed to map the traditional
structured into RDF triples, based on information con-
tained in a well-defined km4City ontology and all ontol-
ogies reused (dcterms, foaf, schema.org, etc.). This process
may be performed by ad-hoc programs that have to take
into account the mapping from linear model to RDF
structures. This two steps process allowed us to test and
validate several different solutions for mapping traditional
information into RDF triples and ontology. The ontological
model has been several times updated and thus the full
RDF storage has been regenerated from scratch reloading
the definition (all the other vocabularies, selecting the
testing several different solutions) and the instance triples
according to the new model under test. Once the model
has been generated, triples can be automatically inserted.

The first essential step is to specify semantic types of
the data set, i.e., it is necessary to establish the relationship
between the columns of the SQL tables and properties of
ontology classes. The second step consists in defining the
Object Properties among the classes, or the relationships
between the classes of the km4City ontology. When
dataset has 2 columns that have the same semantic type
but which correspond to different entities, thus multiple
instances of the same class have to be defined, associate
each column to the correct one.

The process responsible to perform the mapping trans-
formation, passing from Hbase to SQL database has been
produced as a corresponding ETL Kettle associated with
each specific ingestion procedure for each data set. The
second phase, of performing the mapping from SQL to RDF,
has been realized by using a mapping model: Karma Data
Integration tool [12], which generates a R2RML model,
representing the mapping for transport from MySQL to
RDF and then it is uploaded in a OWLIM-SE RDF Store
instance [11]. Karma initialization phase involves loading
the primary reference ontology and connecting dataset
containing the data to be mapped. This process allowed
the production of the knowledge base that may present a
large set of problems due to inconsistencies and incom-
pleteness that may be due to lack of relationships among
different data sets, etc. These problems may lead to the
impossibility of making deductions and reasoning on the
knowledge base, and thus on reducing the effectiveness of
the model constructed. These problems have to be solved
by using a reconciliation process (phase V) via specific
tools and the support of human supervisors.

Moreover, once the mapping is performed a large set of
triples are available coming from: ontologies, static data,
real time historical data, quality improvements, real time
data. These triples have to be loaded into the RDF stores
and specific indexes have to be built to make the store
suitable for real time queries. Thus, phase IV of indexing is
performed. Once the RDF store is ready, specific algorithms
for detecting entities to be reconciled can be executed
exploiting the SPARQL entry point as described in the
following.

4.3. Exploiting and Exploriing smart city data

The km4City Ontology presented in this paper is a
strong generalization of a large set of data modeling
problems. The integration of the several data sets coming
from different sources into a semantic interoperable
knowledge base is a solution to exploit this information
for smart city purpose. To this end, the activities of data
quality improvements can be performed in Phase II after
the ingestion, and/or may be after the triple generation
and indexing to discover problems of reconciliation and to
solve them.

The system has been used to ingest the data coming
from the Municipality of Florence, the Tuscany Region and
MIIC. Considering only files related to the daily weather
forecast of all the available municipalities, we have 286
files updated twice a day, each of which, containing also 16
lines of weather prediction for the week, we obtain an
increase of approximately 270,000 HBase lines per month
that, in terms of triples, corresponds to a monthly increase
of about 4 million triples.

Moreover, in order to explore the data being ingested
and their relationships a tool for data visualization and
exploration was used, that allows exploring the semantic
graph of the relations among the entities, this Linked Open
Graph [17] is available for applications developers to
explore and understand better the data available in the
ontology.

A second tool called ServiceMap to perform geographic
queries has been deployed. It can be used to perform
geographic queries and getting the POIs close to a bus
station, to a street number, to a given point on the map,
etc. (see Fig. 5). The service map, for example, allows to (i)

Fig. 5. Service map (http://servicemap.disit.org).

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839836
get bus stops and from them to access the status line of the
bus, providing the waiting time to the next bus, and (ii)
finding parking and getting in real time the number of
empty places, etc. From each “pin” in the map, it is
possible to pass from the entity identified to its model in
terms of relationships on the LOG.disit.org graph [17].

5. Verification, validation and reconciliation

To connect services to the Street Guide in the repository
a reconciliation phase in more steps, has been required,
because the notation used by the Tuscany region in some
Open Data within the Street Guide, does not always
coincide with those used inside Open Data relating to
different points of interest. In substance, different public
administrations are publishing Open Data that are not
semantically interoperable.

Typical problems can be related to: (i) low quality of
data, (ii) lack of data that are supposed to arrive in real time,
(iii) changes in the data model of the data set, and (iv)
changes and updates into the data sets (this problem could
generate a change into the ontological model and thus the
human intervention is activated for model review), etc. To
this end, periodic verification and validation processes is
needed to be performed by defining a set of SPARQL queries
on the knowledge base with the aim of detecting incon-
sistencies and incompleteness, and verifying the correct
status of the model. These periodically executed queries
perform a regression testing every time a new update of
data process ingestion is performed, and when real time
data arrive into the final RDF store. The validation process
may lead to identify problems that may be limited to the
instances of classes. To this end, the fourth information
associated with each triple allows to identify the problems
and the data set processes to be revised.

Therefore, an iterative workflow process was defined.
During validation there were cases like the Weather
forecast where no connection among the data were pre-
sent due to different encoding of the name of the munici-
pality, for this reason to support the reconciliation process
a table containing the ISTAT code of each municipality was
created, and each time new weather data are available,
they are automatically completed with the correct ISTAT
code, thus supporting the search for the instance of the PA
class to which connect the weather forecasts.

A relevant process of data improvement for semantic
interoperability is related to the application of reconcilia-
tions among the entities associated with locations as

http://servicemap.disit.org

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839 837
streets, civic numbers and localities. On this regard, there
are different types of inconsistencies within the various
integrated dataset, such as:
�
 Typos;

�
 missing street number, or replacement with “0” or

“SNC” (Italian acronym that means without civic
number);
�
 municipalities with no official name (e.g. Vicchio/Vic-
chio del Mugello);
�
 street names with uncommon characters (-, /, 1?,
Ang.,,);
�
 street numbers with strange characters (-, /, 1?, Ang.,
(,);
�
 road name with words in a different order from the
usual (e.g. Via Petrarca Francesco, exchange of name
and surname);
�
 number wrongly written (e.g. 34/AB, 403D,
36INT.1); and
�
 red street numbers (in some cities, street numbers may
have a color. So that a street may have 4/Black and
4/Red, red is the numbering system for shops);Roman
numerals in the road name (e.g., via Papa Giovanni
XXIII).
As a summary, the whole knowledge base initially
created was consisting of more than 81 Million triples,
with a growth of 4 million triples per month. A part of
them can be discharged when statistical values are esti-
mated and punctual value discharged. For the validation, a
total amount of services/points of interest inserted into the
repository has been of 36,777 instances. Among these,
13,185 have been reconciled at street number-level, while
the number of elements reconciled at street-level has been
21,207, all of them for the services. There are also 149
services associated to a coordinate pair, for which recon-
ciliation did not return results, yet for the lack of refer-
ences into the knowledge base (some streets and civic
numbers are still missing or incomplete).

Thanks to the created ontology, is possible to perform
services reconciliation at street number level, i.e. connect-
ing an instance of class Service to an external access that
uniquely identifies a street number on a road, or only at
street-level, with less precision (lack that can be compen-
sated thanks to geolocation of the service).

In the collected data sets, an average of about the 15%
are automatically connected entities since they refer to
perfectly consistent locations (i.e., perfect match in terms
of location, street and civic number) in the MIIC with
respect to the description reported in the service data set.
In the total of location entities ingested, 5.75% of locations
are wrong and not reconciliable due to (i) the presence of
wrong values for streets and/or locations, and (ii) the
lack of a consistent reference location into the MIIC
geographical model.

The reconciliation process can be performed with the
aim of finding elements that identify the same entity while
presenting different URIs. Thus the identified reconcilia-
tions are solved creating an owl:sameAs triple to the
selected location toponym. Reconciliation detection can
be performed by using (i) a set of specific SPARQL queries
and (ii) program tools for RDF link discovering. To this end,
declarative languages for link discovering such as SILK [14]
and LIMES [13] have been proposed. As the production of
SPARQL queries, the programming of the link discovering
algorithms also implies the knowledge of the ontological
structure of the RDF stores to be compared/linked.

5.1. SPARQL reconciliation

The methodology used for SPARQL reconciliation con-
sists of trying to connect each service at street number-
level, and then, perform the reconciliation at street-level.
The first reconciliation step performed consists of an exact
search of the street name associated with each service
integrated. For example, to reconciliate the service located
at “VIA DELLA VIGNA NUOVA 40/R-42/R, FIRENZE”, a
SPARQL query is necessary, to search for all elements of
Road class connected to the municipality of “FIRENZE” (via
the ObjectProperty inMunicipalityOf), which have a name
that exactly corresponds to “VIA DELLA VIGNA NUOVA”
(checking both fields: official name, alternative name). The
query results has to be filtered again, imposing that an
instance of StreetNumber class exists and it corresponds to
civic number “40” or “42”, with the R class code Red. A
very frequent problem for exact search, is the existence of
multiple ways to express toponym qualifiers, that is dug
(e.g. Piazza and P.zza) or parts of the proper name of the
street (such as Santa, or S. or S or S.ta): thanks to support
tables, inside which the possible change of notation for
each individual case identified are inserted, a second
reconciliation step was performed, based on exact search
of the street name, which has allowed to increase the
number of reconciled services at street number-level. The
third reconciliation step is based on the research of the last
word inside the field v:Street-Address of each instance of
the Service class, because, statistically, for a high percen-
tage of street names, this word is the key to uniquely
identify a match.

The above mentioned three steps have been also
carried out without taking into account the street number,
and so in order to obtain a reconciliation at street-level of
each individual service. An additional, phase of manual
correction has been also performed by manually (i) search-
ing services and incongruent locations via web search
service as Google, (ii) cleaning address and street number
fields, and (iii) accepting and performing association
match of non-identified matches, taking into account the
list of probable candidates suggested by the query results.

5.2. Link discovering based reconciliation and comparison

Link discovering based reconciliation consists in writ-
ing specific SILK algorithms for link discovering. They
allow to discover links by writing specific algorithms
grounded on distances and similarity metrics between
patterns and relationships mainly based on string match-
ing and distance measures (Euclidean, weighted models,
tree distances, patterns distance, string match, taxonomical,
Jaro, Jaro-Winkler, Leveisthein, Dice, Jaccard, etc.) [14].

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839838
In this case, a number of link discovering algorithms
have been developed and assessed. Among them, the
better ranked were based on comparing, at the same time,
the location and the street. Firstly searching for the perfect
match on location name and accepting uncertainty on
street number from 0 to 5 characters, for example. Both
criteria have been aggregated considering their weight
almost identical.

5.3. Reconciliation comparison

The obtained results are reported in Table 1. The table
reports the results assessed in terms of precision, recall
and F1 score (the F1 score is also called the F-measure, and
it is defined as harmonic mean of recall and precision)
[15], in identifying the correct entities to be reconciliated.
The first two lines refer to the SPARQL approach with and
without manual intervention as described in Section 5.1.
The manual intervention has strongly improved the recall.
On the other hand, the SPARQL approach is very time
intensive for the programmers since a set of specific
queries have to be produced for each data set to be
reconciled. The second part of Table 1 reported the results
related to different implementations of link discovering
SILK based solutions, by using different string distances
(i.e., leveisthein, dice, and jaccard), with the above men-
tioned values for their parameters. Other distance models
have been also used without obtaining significant results.
The last link discovering solution has been coded by using
an additional knowledge about all the specific strings
coding problems reported in Section 5.

5.4. Consideration on database size

Table 2 shows the size, in terms of triples, of each
macroclass area. As it can be seen from the numbers,
Table 1
Reconciliation comparison.

Method Pre

SPARQL – based reconciliation 1.00
SPARQL – based reconciliationþmanual action 0.98
Link discovering – leveisthein 0.92
Link discovering – dice 0.96
Link discovering – jaccard 1.00
Link discovering – knowledge baseþ leveisthein 0.92

Table 2
Database numbers vs km43city macroareas and data kind.

Macroclass Static triples Real time

Administration 2431 0
Local public transport 644,400 0
Metadata 416 0
Point of interest 471,657 0
Sensors (busses and sensors) 0 4,411,1078
Street-guide 68,985,026 0
Temporal 0 8,715,105
Total 70,103,930 52,826,18
the street-guide data corresponds to about half of all
triples contained in the repository; furthermore, the only
two RealTime macroclasses, i.e. sensors and temporal, are
another important piece of information contained on
triplestore.

In fact, RealTime data are closely related to the number
of enabled services by each municipality or by the Tuscany
region, considering that currently services architecture
built AVM detected, corresponding to a small portion of
all the bus lines (about a tenth of the total number of
monitored lines). The number of real time triples reported
are related to an year of processing. When all the bus lines
will be available the real time triples would become 10
times bigger, dominating the size of the RDF store. On the
other hands, for all the present services the full set of data
about the bus position in each time instant of the day for
several past months would not be needed. And thus, these
details about bus data can be dropped to be substituted
monthly with statistical values for the day, week and
month for the delay. Therefore, also a strategy for the
triplestore has been defined planning a reindexing every 4
months. Maintaining a couple of months of historical
window on the triplestore. This allows us to keep under
control the performance degradation, remaining always in
the range of 90–120 million of triples. Anyway, the
RealTime data, not reloaded into the last re-indexing
triplestore, remain stored in terms of triples files for each
generation in the RDF data store of Phase IV servers.

6. Conclusions

In this paper, a system for the ingestion of public and
private data for smart city with related aspects as road
graph, services available on the roads, traffic sensors etc.,
has been proposed. The system includes both open data
from public administration and private data coming from
cision Recall F1

0.69 0.820
5 0.722 0.833
7 0.508 0.656
8 0.674 0.794
0 0.472 0.642
5 0.714 0.806

triples Reconcilia-tion triples Total row

0 2431
2385 646,785
0 416
34,392 506,049
0 44,111,078
0 68,985,026
0 8,715,105

3 36,777 122,966,890

P. Bellini et al. / Journal of Visual Languages and Computing 25 (2014) 827–839 839
transport systems integrated mangers, thus addressing
and providing real time data of transport system, i.e., the
busses, parking, traffic flows, etc. The system allows
managing large volumes of data coming from a variety of
sources considering both static and dynamic data. This
data is then mapped to the km4City Ontology and stored
into an RDF-Store where this data are available for appli-
cations via SPARQL queries to provide new services to the
users (accessible KM4City document http://www.disit.org/
5606, in terms of schema http://www.disit.org/km4city/
schema/ and in terms of OWL http://www.disit.org/6506).
The derived ontology has been obtained by means of an
incremental process performed analyzing, integrating and
validating each added data set. Thus the resulting ontology
is a strong generalization of a large set of data modeling
problems.

In addition, a thorough verification and validation
process performed allowed us to identify the set of triples
to: (i) improve and enrich the model, and (ii) perform the
corrections. Thus improving and enabling the deductive
capabilities of the final model. Finally, the proposed
system also provides a visualization and exploration tool
to explore the data available in the RDF-Store. As a
conclusion, the performed assessment and comparison
has produced a clear results demonstrating that the best
quality of results are obtained by using the approach based
on SPARQL queries plus some manual actions. Also the
simple usage of SPARQL queries resulted to be better
ranked with respect to the SILK based link discovering.
On the other hand, the writing of link discovering algo-
rithms resulted to be much simpler and faster that
performing a set of specific SPARQL queries. The next step
will be to identify famous names, points of interest,
locality names that can be linked to other data set as
DBpedia3 or GeoNames4 according to a Linked Open Data
model. This process can be performed with a simple NLP
algorithm [6,8].
Acknowledgment

Sincere thanks to the public administrations that pro-
vided the huge data collected and to the Ministry to
provide the funding for Sii-Mobility Smart City Project, a
warm thanks to Lapo Bicchielli, Giovanni Ortolani, and
Francesco Tuveri.
3 http://dbpedia.org/.
4 http://www.geonames.org/.
References

[1] Caragliu, A., Del Bo, C., Nijkamp, P., 2009, Smart cities in Europe, in:
3rd Central European Conference in Regional Science – CERS, Kosice
(sk), 7–9 Ottobre 2009.

[2] P. Bellini, M. Di Claudio, P. Nesi, N. Rauch, Tassonomy and Review of
Big Data Solutions Navigation, Big Data Computing, Chapman and
Hall/CRC (to be published 26th July 2013).

[3] I. Vilajosana, J. Llosa, B. Martinez, M. Domingo-Prieto, A. Angles,
Bootstrapping smart cities through a self-sustainable model based
on big data flows, Commun. Mag. 51 (6) (2013)IEEE 51 (6) (2013).

[4] Ontology of Trasportation Networks, Deliverable A1-D4, Project
REWERSE, 2005, 〈http://rewerse.net/deliverables/m18/a1-d4.pdf〉.

[5] Pan, Feng, Jerry, R. Hobbs, Temporal aggregates in OWL-Time, in:
FLAIRS Conference, vol. 5, 2005, pp. 560–565.

[6] David W. Embley, Douglas M. Campbell, Yuan S. Jiang, Stephen
W. Liddle, Deryle W. Lonsdale, Y-K. Ng, D.Smith Randy, Conceptual-
model-based data extraction from multiple-record Web pages, Data
Knowl. Eng. 31 (3) (1999) 227–251.

[7] Sören Auer, Jens Lehmann, Sebastian Hellmann, Linkedgeodata:
adding a spatial dimension to the web of data.”, The Semantic
Web-ISWC, Springer, Berlin, Heidelberg, 2009, 731–746The Seman-
tic Web-ISWC, Springer, Berlin, Heidelberg, 2009, 731–746.

[8] Pierfrancesco Bellini Andrea Bellandi, Antonio Cappuccio, Paolo Nesi,
Gianni Pantaleo, Nadia Rauch, Assisted knowledge base generation,
management and competence retrieval, Int. J. Softw. Eng. Knowl.
Eng. 22 (8) (2012).

[9] Apache HBase, A, Distributed Database for Large Datasets, The
Apache Software Foundation, Los Angeles, CA, http://hbase.apache.
org.

[10] Pentaho Data Integration, http://www.pentaho.com/product/
data-integration.

[11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov,
Zdravko Tashev, Ruslan Velkov, OWLIM: a family of scalable seman-
tic repositories, Semant. Web J. 2 (1) (2011).

[12] S. Gupta, P.Szekely, C. Knoblock, A.Goel, M. Taheriyan, M. Muslea,
Karma: A System for Mapping Structured Sources into the Semantic
Web, in: Proceedings of the 9th Extended Semantic Web Conference
(ESWC2012).

[13] A. Ngomo, S. Auer, LIMES: a time-efficient approach for large-scale
link discovery on the web of data, in: Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, AAAI Press,
vol. 3, 2011.

[14] R. Isele, C. Bizer, Active learning of expressive linkage rules using
genetic programming, Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 23, 2013, pp. 2–15.

[15] D.M.W. Powers, Evaluation from precision, recall and F-measure to
roc informedness, markedness and correlation, J. Mach. Learn.
Technol. 2 (1) (2011) 37–63.

[16] Hepp, Martin, GoodRelations: an ontology for describing products
and services offers on the web, in: Proceedings of the 16th Interna-
tional Conference on Knowledge Engineering and Knowledge Man-
agement (EKAW2008), Acitrezza, Italy, Springer LNCS, vol. 5268,
September 29–October 3, 2008, pp. 332–347.

[17] Pierfrancesco Bellini, Paolo Nesi, Alessandro Venturi, Linked Open
Graph: browsing multiple SPARQL entry points to build your own
LOD views, International Journal of Visual Language and Computing,
2014, http://dx.doi.org/10.1016/j.jvlc.2014.10.003 (in press).

http://www.disit.org/5606
http://www.disit.org/5606
http://www.disit.org/km4city/schema/
http://www.disit.org/km4city/schema/
http://www.disit.org/6506
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref1
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref1
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref1
http://rewerse.net/deliverables/m18/a1-d4.pdf
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref2
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref2
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref2
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref2
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref3
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref3
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref3
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref3
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref4
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref4
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref4
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref4
http://hbase.apache.org
http://hbase.apache.org
http://www.pentaho.com/product/data-integration
http://www.pentaho.com/product/data-integration
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref5
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref5
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref5
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref6
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref6
http://refhub.elsevier.com/S1045-926X(14)00116-5/sbref6
dx.doi.org/10.1016/j.jvlc.2014.10.003
http://dbpedia.org/
http://www.geonames.org/

	Km4City ontology building vs data harvesting and cleaning for smart-city services
	Introduction
	Km4city ontology main elements
	Km4City smart-city ontology details
	Administration macroclasss
	Street-guide macroclass
	Point of interest macroclass
	Public transport macroclass
	Sensors macroclass
	Temporal macroclass
	Metadata macroclass

	Data engineering architecture
	Data ingestion and quality improvement
	Data mapping and indexing
	Exploiting and Exploriing smart city data

	Verification, validation and reconciliation
	SPARQL reconciliation
	Link discovering based reconciliation and comparison
	Reconciliation comparison
	Consideration on database size

	Conclusions
	Acknowledgment
	References

